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Abstract. We study the four most significant high precision observables of QED —the anomalous electron
and muon magnetic moments, the hydrogen Lamb shift and muonium hyperfine splitting— in the context
of SU(2) ⊗ U(1) gauge-invariant effective Lagrangians. The agreement between the theoretical predictions
for these observables and the experimental data places bounds on the lowest dimension operators of the
effective Lagrangians. We also place bounds on such effective operators using other experimental data.
Comparison of the two types of bounds allows us to discuss the potential of each one of the four high
precision observables in the search for physics beyond the Standard Model. We find that the anomalous
electron and muon magnetic moments are sensitive to new physics while the hydrogen Lamb shift and
muonium hyperfine splitting are not.

1 Introduction and motivation

QED is the textbook example of the triumph of quantum
field theory: it is a consistent and predictive theory that
agrees with experiment to a very high accuracy [1]. We
know, of course, that QED is a low energy remnant of the
more complete Standard Model (SM) of electroweak inter-
actions. Still, QED is usually treated as a self-contained
theory, into which one may incorporate the corrections
from electroweak and strong interactions. Also, and this
is important for the present article, any non-standard de-
viations from QED are assumed to come from extensions
of QED that respect the U(1) electromagnetic gauge in-
variance.

This last point is illustrated by a classical example.
Consider the anomalous magnetic moment of the electron
ae ≡ (g − 2)e/2. To parameterise deviations from QED
one introduces the U(1) invariant effective Lagrangian:

L =
α1

Λ
ψe σ

µν ψe Fµν (1)

Here α1 is a coupling constant and Λ is a energy scale.
The (tree-level) contribution to ae is

δae = 2
α1

Λ

2me

e
(2)

The agreement between the experimental measure [2] and
the theoretical prediction [3] for ae sets the stringent limit

−6.9 × 10−11 ≤ δae ≤ 4.3 × 10−11 (3)

This limit on δae (and on all other observables in the
article) is obtained at the 95% C. L.

In this fashion one can obtain an upper bound on the
coefficients of the effective Lagrangian:

α1

Λ
<∼ 2 × 10−5 TeV−1 (4)

Although there is nothing wrong with this type of anal-
ysis, we think one can and should go beyond it. One of the
reasons is due to the well-known success of the standard
SU(2) ⊗ U(1) model in describing the electroweak data.
Deviations from the SM have been parameterised in terms
of effective Lagrangians that respect SU(2) ⊗ U(1) gauge
invariance [4]. Here, we will follow the same prescription,
namely we will describe the effects of physics beyond the
SM by a set of SU(2) ⊗ U(1) gauge-invariant effective
Lagrangians that modify the high precision QED observ-
ables. In fact, in the example we have presented, where
the Lagrangian (1) is used, the allowed values of Λ are
much greater than the Fermi scale1 and thus it should be
regarded as natural to use the full SU(2) ⊗ U(1) invari-
ance instead of the electromagnetic U(1) invariance. We
further remark that by using the full SU(2)⊗ U(1) gauge
group we are sensitive to physics beyond the SM rather
than just to QED. Since the SM includes QED we have
widened the scope of the effective Lagrangian approach;
going from the framework where (1) and (4) hold to the
analysis performed here.

In this article we will study the four high precision
QED observables that are known with the greatest preci-
sion [1]: (g−2)e, (g−2)µ, the Lamb shift and muonium hy-
perfine splitting. Experimental data on such observables

1 One can estimate [5] the coupling constant α1 in (4) to be
of order α1 ≈ e/16π2 ' 10−3
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(we call these experiments “QED experiments”) restrict
the coefficients of the lowest-dimension operators in the
effective Lagrangian approach. As we will see, the oper-
ators that lead to modifications of QED observables will
also alter other quantities measured in other experiments
like LEP (we call these experiments “non-QED”). This
fact can be used to compare the ability of different ex-
periments to push the search for new physics. Both QED
and non-QED experiments restrict the coefficients of the
effective operators. Which experiments lead to the most
restrictive limits will tell us whether, for a particular QED
observable, the high precision QED tests are or are not
competitive with non-QED experiments in the search for
physics beyond the Standard Model. In the article, we will
first calculate for each QED observable the bounds on all
the effective operators from QED experiments and after-
wards from non-QED experiments. At the end, we will dis-
cuss our results and compare various bounds. Some of our
conclusions may be relevant in the light of the upcoming
experiment [6] at the Brookhaven Alternative Gradient
Synchroton (AGS) to measure the anomalous magnetic
moment of the muon with a precision ∆aµ = ± 4× 10−10.

2 The electron anomalous magnetic moment

The leading contributions to ae come from the following
two dimension six operators

OeB ≡ Le σ
µν eR ΦBµν (5)

and
OeW ≡ Le σ

µν τ eR ΦWµν (6)

where Le is the left-handed isodoublet containing eL, eR

is its right-handed partner, Wµν and Bµν are the SU(2)
and U(1) field strengths, Φ is the scalar doublet, and τ
are the Pauli matrices.

Let us now in turn analyse the effects of these two
operators. The effective Lagrangian corresponding to the
operator (5) is

L =
αeB

Λ2 OeB (7)

where αeB is a coupling constant and Λ is a high energy
scale. After electroweak symmetry breaking, the shift in
ae is

δae =
√

2
v

2me

e
cW εeB (8)

where εeB ≡ αeB v
2/Λ2 (v ' 246 GeV is the Fermi scale).

Hereafter we use cW ≡ cos θW and sW ≡ sin θW . The limit
(3) sets a bound on the parameter εeB :

−5 × 10−6 ≤ εeB(ae) ≤ 3 × 10−6 (9)

Here, ae inside the parentheses indicates that the limit on
εeB is obtained from the consideration of the high preci-
sion QED observable ae.

The Lagrangian (7) also leads to a modification of the
standard Ze+e− coupling. The shift in the Γe = Γ (Z −→

e+e−) width is

δΓe

Γe
=

s2W
g2

V + g2
A

ε2eB (10)

where gV = −1/2 + 2s2W and gA = −1/2. Γe is measured
at the Z-peak at LEP [7], and it agrees well with the
standard model prediction. One finds the restriction

|εeB(non-QED)| ≤ 9 × 10−2 (11)

where now “non-QED” inside the parentheses signifies
that we obtain the limit using experiments other than high
precision QED observations.

The operator (6) also contributes to ae. Writing

L =
αeW

Λ2 OeW (12)

we find

δae = −
√

2
v

2me

e
sW εeW (13)

with εeW ≡ αeW v2/Λ2. Using (3), we get

−5 × 10−6 ≤ εeW (ae) ≤ 8 × 10−6 (14)

The operator OeW leads to couplings Ze+e− and Weν
that would modify the standard model predictions. We
find, however, that the possible shift in Z −→ e+e− decay
leads to the most restrictive limits of all the “non-QED”
experiments. We obtain

|εeW (non-QED)| ≤ 5 × 10−2 (15)

We should now comment on the question of cancella-
tions among different effective contributions. The effective
Lagrangian is a linear combination of both operators in
(5) and (6), and the total contribution to ae is the sum
of both contributions in (8) and (13). A strong cancella-
tion in the two contributions either to ae (or to Γe) would
be unnatural. Still, a partial cancellation could occur and
thus the limits could be relaxed but presumably only by a
factor of order one. Fortunately, our main conclusions de-
pend only on the order of magnitude of the limit and not
on such details. Consequently, we will assume that there
are no fine-tuned cancellations among contributions to the
observables.

3 The muon anomalous magnetic moment

There are two operators, similar to (5) and (6), that con-
tribute to aµ:

OµB ≡ Lµ σ
µν µR ΦBµν

OµW ≡ Lµ σ
µν τ µR ΦWµν

(16)

The analysis is very similar to the case of ae. The agree-
ment between theory and experiment [8,9] restricts any
contribution to aµ as follows:

−1.4 × 10−8 ≤ δaµ ≤ 2.2 × 10−8 (17)
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which implies

−4 × 10−6 ≤ εµB(aµ) ≤ 7 × 10−6

−2 × 10−5 ≤ εµW (aµ) ≤ 7 × 10−6 (18)

(The parameters εµB and εµW are defined in analogy to
εeB and εeW ).

The operators (16) modify Γ (Z −→ µ+µ−). The LEP
data imply

|εµB(non-QED)| ≤ 9 × 10−2 (19)

|εµW (non-QED)| ≤ 5 × 10−2 (20)

OµW contains vertices like Wµν that modify for instance
µ −→ eνν. However, the corresponding limit on εµW is
much less stringent than (20).

4 The Lamb shift

The splitting of the hydrogen levels 2S1/2 and 2P1/2,
∆EH(2S1/2 − 2P1/2) ≡ ELS, known as the Lamb shift, is
an important observable to test QED. The agreement be-
tween experiment [10] and theory [11] requires that other
contributions to the Lamb shift respect the stringent limit

−38 ≤ δELS ≤ 10 kHz (21)

There is a long list of dimension six operators that
could contribute to the Lamb shift. However, after dis-
carding the effective operators that induce redefinitions of
the physical parameters and using the equations of motion
in a rigorous way, one can select the following independent
basis [12]:

{OeB ,OeW ,O∂B ,ODW } (22)

where OeB , OeW are defined in (5) and (6), and

O∂B ≡ ∂λB
µν ∂λBµν

ODW ≡ [DλWµν ]†
[
DλWµν

] (23)

Let us start with the first operator, OeB . Its effects
are expressed via the Lagrangian (7), that arose earlier.
Its contribution to the Lamb shift is given by

δELS =
(me α)3

6π
e

2me

√
2
v
cW εeB (24)

The experimental limit (21) leads to

−7 × 10−3 ≤ εeB(ELS) ≤ 2 × 10−3 (25)

The Lagrangian (12), containing OeW , has a contribution
similar to (24), with cW εeB → −sW εeW . The correspond-
ing restriction is

−3 × 10−3 ≤ εeW (ELS) ≤ 2 × 10−2 (26)

where ELS inside the parentheses indicates that the limit
is obtained using ELS.

While these two operators affect the eeγ vertex, the
operators (23) contribute to the Lamb shift through the
photon self-energy. We find

δELS = me α
4 m

2
e

v2

(
c2W ε∂B + s2W εDW

)
(27)

where ε∂B and εDW are defined in analogy to εeB and
εeW . Assuming that there are no cancellations among the
contributions of O∂B and ODW , yields

−6 × 103 ≤ ε∂B(ELS) ≤ 2 × 103

−2 × 104 ≤ εDW (ELS) ≤ 5 × 103 (28)

Following our general strategy we now calculate the
limits to the different ε’s using other experimental data.
The limits on εeB and εeW have already been quoted in
(11) and (15). The best bounds on ε∂B and εDW come
from the LEP measurements on Z widths. They are

−2 × 10−2 ≤ ε∂B(non-QED) ≤ 2 × 10−2

−6 × 10−3 ≤ εDW (non-QED) ≤ 4 × 10−3 (29)

5 Muonium hyperfine splitting

Muonium is a system which displays many of the hydrogen
properties but does not contain constituent hadrons. It is
in this respect a good testing ground for QED. Its ground
state hyperfine splitting, νµ-hfs, corresponds to the energy
difference among states with parallel or antiparallel align-
ment of the e− and µ+ magnetic moments. It has been
measured very accurately [13] and there are precise the-
oretical calculations [14]. Additional contributions to this
observable are limited by

−2.5 ≤ δνµ-hfs ≤ 3.0 kHz (30)

The independent dimension six operators contribut-
ing to νµ-hfs can be classified into two types. We have,
first, OeB and OeW that affect the eeγ vertex and OµB

and OµW that affect the µµγ vertex. These four oper-
ators have already appeared in our analysis. The second
type are four-fermion operators. Using Fierz shuffling, one
can select the following complete set of effective operators
that we call O4f :

O4f =
{

O(1)
`` ,O(3)

`` ,Oeµ,O`µ,Oe`

}
(31)

where
O(1)

`` ≡ (Le γ
µ Le)(Lµ γµ Lµ)

O(3)
`` ≡ (Le γ

µ τ Le)(Lµ γµ τ Lµ)

Oeµ ≡ (eR γ
µ eR)(µR γµ µR)

O`µ ≡ (Le γ
µ Le)(µR γµ µR)

Oe` ≡ (eR γ
µ eR)(Lµ γµ Lµ)

(32)

The contribution of OeB and OeW is calculated to be

δνµ-hfs =
8

3π
α2R∞

me

mµ

[
2me

e

√
2
v

(cW εeB − sW εeW )

]

(33)
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and that from OµB and OµW is similar to (33), with
me → mµ inside the brackets. The four-fermion effective
operators contribute as

δνµ-hfs =
α

π2 R∞
m2

e

v2

(
ε
(1)
`` + ε

(3)
`` + εeµ − ε`µ − εe`

)
(34)

where R∞ is the Rydberg constant.
Again excluding fortuitous cancellations, we use (30)

to find

−4 × 10−2 ≤ εeB(νµ-hfs) ≤ 4 × 10−2

−8 × 10−2 ≤ εeW (νµ-hfs) ≤ 6 × 10−2

−2 × 10−4 ≤ εµB(νµ-hfs) ≤ 2 × 10−4

−4 × 10−4 ≤ εµW (νµ-hfs) ≤ 3 × 10−4

(35)

and
−40 ≤ ε

(1)
`` (νµ-hfs) ≤ 50

−40 ≤ ε
(3)
`` (νµ-hfs) ≤ 50

−40 ≤ εeµ(νµ-hfs) ≤ 50

−50 ≤ ε`µ(νµ-hfs) ≤ 40

−50 ≤ εe`(νµ-hfs) ≤ 40

(36)

where we have defined εi ≡ αi v
2/Λ2 and the αi’s are the

corresponding coefficients of the operators (5), (6), (16),
and (32) in the effective Lagrangian. Now νµ-hfs inside
the parentheses indicates that the limit is obtained using
νµ-hfs.

As before, we now use other experimental data to limit
the ε parameters. The best limits on εeB , εeW , εµB , and
εµW are extracted from the LEP data and have been al-
ready quoted in (11), (15), (19), and (20).

The new operators (32) have vertices that modify the
standard prediction for e+e− −→ µ+µ− and O(3)

`` also
modifies the Z-widths. LEP data restrict all these oper-
ators. Additionally, the operator O(3)

`` alters the µ-decay
prediction but the restriction is less severe. Finally, we
obtain

|ε(1)`` (non-QED)| ≤ 9 × 10−1

−3 × 10−3 ≤ ε
(3)
`` (non-QED) ≤ 2 × 10−3

|εeµ(non-QED)| ≤ 9 × 10−1

|ε`µ(non-QED)| ≤ 9 × 10−1

|εe`(non-QED)| ≤ 9 × 10−1

(37)

6 Summary and discussion

We have studied four high precision observables that pro-
vide excellent tests of QED. For each observable we have
identified the effective Lagrangians that can contribute to
it. The Lagrangians are composed of the (lowest-dimen-
sion) independent operators that are SU(2)⊗ U(1) gauge-
invariant.

There are two steps in our calculations. We have, first,
bounded all the ε coefficients of the effective Lagrangian

using QED experiments and theoretical predictions. The
best bounds are given in (9), (14), (18), (28), and (36).
Second, we have noticed that the operators in the effec-
tive Lagrangian contain terms that lead to new effects
in observables other than the above four. We can thus
use further data to bound the same coefficients, but now
the data is not from the “QED” observables but rather
from “non-QED” observables. In fact, the most restric-
tive “non-QED” data turns out to be LEP data.

We have bounds from two experimental sources. As we
said in the introduction a comparison between them is en-
lightening since it is clear that the experiment placing the
strongest bounds on the effective coefficients ε’s is the one
most sensitive to new physics. For a given ε, the compar-
ison is done in the effective Lagrangian approach. Thus,
our conclusions are expected to be model independent.

The anomalous magnetic moments of the electron and
the muon restrict the coefficients of the operators OeB ,
OeW , and OµB ,OµW much more severely that any “non-
QED” data. As a first conclusion, this suggests that by
improving the high precision measurements of (g − 2)e

and (g− 2)µ one could be sensitive to physics beyond the
standard electroweak model. In the light of this remark,
we think it is interesting that (g − 2)µ will be measured
with unprecedent precision at the AGS [6].

The conclusion we reach for the other two observables,
the hydrogen Lamb shift and the muonium hyperfine split-
ting, is the opposite. Looking at the numerical limits ob-
tained in this article, we see that the limits on the op-
erators OeB ,OeW ,OµB , and OµW obtained from the hy-
drogen Lamb shift and muonium hyperfine splitting are
weaker than the limits using (g−2)e and (g−2)µ. For the
remaining operators, namely O∂B ,ODW , and O4f , bounds
from LEP data are more stringent. This suggests than
these two observables are far from being sensitive to new
physics.

Note added: After we finished the writing, we became
aware of a related work published in [15]. In this refer-
ence, the authors have computed non-standard contribu-
tions to aµ arising from composite fermions and gauge
bosons, and have compared with constraints from LEP-2
when available. Our work differs from theirs in the follow-
ing aspects. We use gauge-invariant effective Lagrangians
and calculate at tree-level, while they calculate loops with
form factors, excited leptons, etc. Also, they do a very ex-
haustive study but restricted to aµ while we have included
all the relevant QED observables.
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R. Escribano, E. Massó: High precision tests of QED and physics beyond the standard model 143

References

1. For a recent review of QED see: Quantum Electrodynam-
ics, edited by T. Kinoshita, Advanced Series on Directions
in High Energy Physics Vol. 25: World Scientific, Singa-
pore 1990

2. R. S. Van Dyck, Jr., P. B. Schwinberg, H. G. Dehmelt:
Phys. Rev. Lett. 59 (1987) 26

3. T. Kinoshita: Phys. Rev. Lett. 75 (1995) 4728
4. W. Buchmüller, D. Wyler: Nucl. Phys. B268 (1986) 621;

C. N. Leung, S. T. Love, S. Rao: Z. Phys. C31 (1986) 433
5. C. Arzt, M. B. Einhorn, J. Wudka: Phys. Rev. D49 (1994)

1370
6. V. W. Hughes in: Frontiers of High Energy Spin Physics,

edited by T. Hasegawa et al., Universal Academy Press
1992, pp. 717–722

7. The LEP Electroweak Working Group: LEPEWWG/95–
02 (1995)

8. T. Kinoshita in: Frontiers of High Energy Spin Physics
(Ref. [6]), pp. 9–18

9. J. Bailey et al.: Phys. Lett. 68B (1977) 191; F. J. M. Far-
ley, E. Picasso in: Quantum Electrodynamics (Ref. [1]),
pp. 479–559

10. S. R. Lundeen, F. M. Pipkin: Phys. Rev. Lett. 46, (1981)
232; Metrologia 22 (1986) 9

11. A. van Wijngaarden, J. Kwela, G. W. F. Drake: Phys.
Rev. A43 (1991) 3325
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